FEATURES

Isolated high-side and low-side outputs
High side or low side relative to input: ± 700 V PEAK
High-side/low-side differential: 700 V peak
0.1 A peak output current

High frequency operation: $5 \mathbf{M H z}$ max
High common-mode transient immunity: $>50 \mathrm{kV} / \mu \mathrm{s}$
High temperature operation: $105^{\circ} \mathrm{C}$
Wide body, 16-lead SOIC
UL1577 2500 V rms input-to-output withstand voltage

APPLICATIONS

Isolated IGBT/MOSFET gate drives
 Plasma displays
 Industrial inverters
 Switching power supplies

GENERAL DESCRIPTION

The ADuM 1230^{1} is an isolated half-bridge gate driver that employs Analog Devices, Inc., i Coupler ${ }^{\circledR}$ technology to provide independent and isolated high-side and low-side outputs. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to optocoupler-based solutions.

By avoiding the use of LEDs and photodiodes, this iCoupler gate drive device is able to provide precision timing characteristics not possible with optocouplers. Furthermore, the reliability and performance stability problems associated with optocoupler LEDs are avoided.

In comparison to gate drivers employing high voltage level translation methodologies, the ADuM1230 offers the benefit of true, galvanic isolation between the input and each output. Each output may be operated up to $\pm 700 \mathrm{~V}_{\text {Peak }}$ relative to the input, thereby supporting low-side switching to negative voltages. The differential voltage between the high side and low side can be as high as 700 V peak.

As a result, the ADuM1230 provides reliable control over the switching characteristics of IGBT/MOSFET configurations over a wide range of positive or negative switching voltages.
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; 7,075,329; and other pending patents.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. B

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Package Characteristics 4
Regulatory Information 4
Insulation and Safety-Related Specifications 4
Recommended Operating Conditions 4
REVISION HISTORY
12/07—Rev. A to Rev. B
Changes to Note 1 1
Change to Minimum Pulse Width 3
12/05-Rev. Sp0 to Rev. A
Changes to Figure 1 and Note 1 1
Added Typical Application Usage Section 9
Inserted Figure 14 9
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Applications Information 8
Common-Mode Transient Immunity 8
Typical Application Usage 9
Outline Dimensions 10
Ordering Guide 10

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDI}} \leq 5.5 \mathrm{~V}, 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDA}} \leq 18 \mathrm{~V}$, and $12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDB}} \leq 18 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=15 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{DDB}}=15 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current (VD1 Pins)						
Quiescent	$\mathrm{IDDI}(0)$		2.9	4.0	mA	
10 Mbps	IDDI (10)		5.2	8.0	mA	
Output Supply Current (VDDA and $\mathrm{V}_{\text {DDB }}$ Pins)						
Quiescent	$\mathrm{IDDA}_{(Q)} \mathrm{I}_{\text {DDB (Q) }}$		0.3	1.2	mA	
10 Mbps	$\operatorname{IDDA~(10),~IDDB~(10)~}$		16	22	mA	$C_{L}=200 \mathrm{pF}$
Input Currents	$\mathrm{II}_{1}, \mathrm{IIB}^{\text {, Idisable }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IA }}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {DISABLE }} \leq \mathrm{V}_{\text {DD1 }}$
Logic High Input Threshold	V_{IH}	2.0			V	
Logic Low Input Threshold	$V_{\text {IL }}$			0.8	V	
Logic High Output Voltages	Vоан, Vовн	$\begin{aligned} & V_{\mathrm{DDA}}-0.1, \\ & \mathrm{~V}_{\mathrm{DDB}}-0.1 \end{aligned}$	$V_{\text {DDA }}, V_{\text {dDb }}$		V	$\mathrm{I}_{\text {о, }}, \mathrm{IOB}^{\prime}=-1 \mathrm{~mA}$
Logic Low Output Voltages	$\mathrm{V}_{\text {oal }} \mathrm{V}_{\text {obl }}$			0.1	V	$\mathrm{I}_{\text {OA, }}, \mathrm{IOBB}=+1 \mathrm{~mA}$
Output Short-Circuit Pulsed Current ${ }^{1}$	$\mathrm{lom}_{\text {(SC) }}, \mathrm{IOB}_{\text {(SC) }}$	100			mA	
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			80	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
Maximum Switching Frequency ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
Propagation Delay ${ }^{4}$	tpHL, tPLH	97	124	160	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
Change vs. Temperature			100		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width Distortion, \mid tPLH $-\mathrm{t}_{\text {PHL }} \mid$	PWD			8	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
Channel-to-Channel Matching, Rising or Falling Edges ${ }^{5}$				5	ns	$C_{L}=200 \mathrm{pF}$
Channel-to-Channel Matching, Rising vs. Falling Edges ${ }^{6}$				13	ns	$C_{L}=200 \mathrm{pF}$
Part-to-Part Matching, Rising or Falling Edges ${ }^{7}$				55	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$, input $\mathrm{t}_{\mathrm{R}}=3 \mathrm{~ns}$
Part-to-Part Matching, Rising vs. Falling Edges ${ }^{8}$				63	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$, input $\mathrm{t}_{\mathrm{R}}=3 \mathrm{~ns}$
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$			20	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$

[^0]
ADuM1230

PACKAGE CHARACTERISTICS

Table 2.

Parameter	Symbol	Min	Typ \quad Max	Unit	Test Conditions
Resistance (Input-to-Output) 1	$\mathrm{R}_{-\mathrm{o}}$	10^{12}		Ω	
Capacitance (Input-to-Output) 1	$\mathrm{C}_{1-\mathrm{o}}$	2.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance	C_{1}		4.0		pF
IC Junction-to-Ambient Thermal Resistance	θ_{JCa}		76		

${ }^{1}$ The device is considered a two-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.

REGULATORY INFORMATION

The ADuM1230 is approved by the organizations listed in Table 3.
Table 3.

UL'

Recognized under UL1577 component recognition program
${ }^{1}$ In accordance with UL1577, each ADuM1230 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for one second (current leakage detection limit $=5 \mu \mathrm{~A}$).
INSULATION AND SAFETY-RELATED SPECIFICATIONS
Table 4.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(101)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

RECOMMENDED OPERATING CONDITIONS

Table 5.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	+105	${ }^{\circ} \mathrm{C}$
Input Supply Voltage ${ }^{1}$	$V_{\text {DD1 }}$	4.5	5.5	V
Output Supply Voltages ${ }^{1}$	$V_{\text {DDA }}, V_{\text {DDB }}$	12	18	V
Input Signal Rise and Fall Times			100	ns
Common-Mode Transient Immunity, Input-to-Output ${ }^{2}$		-50	+50	kV/ $/$ s
Common-Mode Transient Immunity, Between Outputs ${ }^{2}$		-50	+50	kV/ $/ \mathrm{s}$
Transient Immunity, Supply Voltages ${ }^{2}$		-50	$+50$	kV/ $\mu \mathrm{s}$

[^1]
ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
Storage Temperature ($\mathrm{T}_{\text {ST }}$)	$-55^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$
Ambient Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Input Supply Voltage ${ }^{1}$ (VDII)	-0.5 V to +7.0 V
Output Supply Voltage ${ }^{1}$ ($\left.\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {DDB }}\right)$	-0.5 V to +27 V
Input Voltage ${ }^{1}\left(\mathrm{~V}_{1 A}, \mathrm{~V}_{\mathrm{IB}}\right)$	-0.5 V to $\mathrm{V}_{\text {DII }}+0.5 \mathrm{~V}$
Output Voltage ${ }^{1}$	
$V_{\text {OA }}$	-0.5 V to $\mathrm{V}_{\text {DDA }}+0.5 \mathrm{~V}$
$V_{\text {ob }}$	-0.5 V to $\mathrm{V}_{\text {DDB }}+0.5 \mathrm{~V}$
Input-to-Output Voltage ${ }^{2}$	$-700 \mathrm{~V}_{\text {peak }}$ to $+700 \mathrm{~V}_{\text {peak }}$
Output Differential Voltage ${ }^{3}$	+700 V PEAK
Output DC Current (loa, lob)	-20 mA to +20 mA
Common-Mode Transients ${ }^{4}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADuM1230

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

$\mathrm{V}_{\mathrm{IA}} 1$		16 V DDA
$V_{1 B}$ 2		$15 \mathrm{~V}_{\text {OA }}$
$\mathrm{V}_{\text {DD1 }} 3$	ADuM1230	$14 \mathrm{GND}_{\mathrm{A}}$
$\mathrm{GND}_{1} 4$	TOP VIEW	13 NC
DISABLE 5	(Not to Scale)	12 NC
NC 6		$11 \mathrm{~V}_{\text {DDB }}$
NC 7		10 V OB
$\mathrm{V}_{\text {DD1 }} 8$		$9 \mathrm{GND}_{\mathrm{B}}$

Figure 2. Pin Configuration
Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	$\mathrm{V}_{\text {IA }}$	Logic Input A.
2	$V_{\text {IB }}$	Logic Input B.
3, 8^{1}	$\mathrm{V}_{\mathrm{DD} 1}$	Input Supply Voltage, 4.5 V to 5.5 V .
4	GND_{1}	Ground Reference for Input Logic Signals.
5	DISABLE	Input Disable. Disables the isolator inputs and refresh circuits. Outputs take on default low state.
$6,7,12,13^{2}$	NC	No Connect.
9	$\mathrm{GND}_{\text {B }}$	Ground Reference for Output B.
10	Vов	Output B.
11	$V_{\text {DDB }}$	Output B Supply Voltage, 12 V to 18 V .
14	$\mathrm{GND}_{\mathrm{A}}$	Ground Reference for Output A.
15	VoA	Output A.
16	VDDA	Output A Supply Voltage, 12 V to 18 V .

${ }^{1}$ Pin 3 and Pin 8 are internally connected. Connecting both to V_{DD} is recommended.
${ }^{2}$ Pin 12 and Pin 13 are floating and should be left unconnected.
Table 8. ADuM1230 Truth Table (Positive Logic)

$\mathbf{V}_{\text {IA }} / \mathbf{V}_{\text {IB }}$ Input	V VDI State	DISABLE	V $_{\text {OA }} / \mathbf{V}_{\text {OB }}$ Output	Notes
H	Powered	L	H	
L	Powered	L	L	
X	Unpowered	X	L	Output returns to input state within 1μ of $\mathrm{V}_{\text {DDI }}$ power restoration.
X	Powered	H	L	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Input Supply Current Variation with Data Rate

Figure 4. Typical Output Supply Current Variation with Data Rate

Figure 5. Typical Propagation Delay Variation with Temperature

Figure 6. Typical Propagation Delay Variation with Output Supply Voltage (Input Supply Voltage = 5.0 V)

Figure 7. Typical Propagation Delay Variation with Input Supply Voltage (Output Supply Voltage $=15.0 \mathrm{~V}$)

ADuM1230

APPLICATIONS INFORMATION

COMMON-MODE TRANSIENT IMMUNITY
In general, common-mode transients consist of linear and sinusoidal components. The linear component of a commonmode transient is given by

$$
\mathrm{V}_{\mathrm{CM}, \text { linear }}=(\Delta \mathrm{V} / \Delta \mathrm{t}) t
$$

where $\Delta \mathrm{V} / \Delta \mathrm{t}$ is the slope of the transient shown in Figure 11 and Figure 12.
The transient of the linear component is given by

$$
d V_{C M} / d t=\Delta \mathrm{V} / \Delta \mathrm{t}
$$

The ability of the ADuM1230 to operate correctly in the presence of linear transients is characterized by the data in Figure 8. The data is based on design simulation and is the maximum linear transient magnitude that the ADuM1230 can tolerate without an operational error. This data shows a higher level of robustness than what is shown in Table 5 because the transient immunity values obtained in Table 5 use measured data and apply allowances for measurement error and margin.

Figure 8. Transient Immunity (Linear Transients) vs. Temperature
The sinusoidal component (at a given frequency) is given by

$$
V_{C M, \text { sinusoidal }}=V_{o s i n}(2 \pi f t)
$$

where:
V_{0} is the magnitude of the sinusoidal.
f is the frequency of the sinusoidal.

The transient magnitude of the sinusoidal component is given by

$$
d V_{C M} / d t=2 \pi f V_{0}
$$

The ability of the ADuM1230 to operate correctly in the presence of sinusoidal transients is characterized by the data in Figure 9 and Figure 10. The data is based on design simulation and is the maximum sinusoidal transient magnitude $\left(2 \pi f \mathrm{~V}_{0}\right)$ that the ADuM1230 can tolerate without an operational error. Values for immunity against sinusoidal transients are not included in Table 5 because measurements to obtain such values have not been possible.

Figure 9. Transient Immunity (Sinusoidal Transients), $27^{\circ} \mathrm{C}$ Ambient Temperature

Figure 10. Transient Immunity (Sinusoidal Transients), $100^{\circ} \mathrm{C}$ Ambient Temperature

Figure 11. Common-Mode Transient Immunity Waveforms—Input to Output

Figure 12. Common-Mode Transient Immunity Waveforms—Between Outputs

Figure 13. Transient Immunity Waveforms—Output Supplies

TYPICAL APPLICATION USAGE

The ADuM1230 is intended for driving low gate capacitance transistors (200 pF typically). Most high voltage applications involve larger transistors than this. To accommodate these situations, users can choose either a gate driver with a stronger output stage or the buffer configuration with the ADuM1230, as shown in Figure 14. In many cases, the buffer configuration is the less expensive of the two options and provides the greatest amount of design flexibility. The precise buffer/high voltage transistor combination can be selected to fit the application needs.

Figure 14.

ADuM1230

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	No. of Channels	Output Peak Current (A)	Output Voltage (V)	Temperature Range	Package Description	Package Option
ADuM1230BRWZ ${ }^{1}$	2	0.1	15	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM1230BRWZ-RL ${ }^{1}$	2	0.1	15	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W, 13-Inch Tape and Reel Option (1,000 Units)	RW-16

[^3]ADuM1230

NOTES

NOTES

[^0]: ${ }^{1}$ Short-circuit duration less than one second. Average power must conform to the limit shown in the Absolute Maximum Ratings section.
 ${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified timing parameters are guaranteed.
 ${ }^{3}$ The maximum switching frequency is the maximum signal frequency at which the specified timing parameters are guaranteed.
 ${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \times}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \times}$ signal.
 ${ }^{5}$ Channel-to-channel matching, rising vs. falling edges is the magnitude of the propagation delay difference between two channels of the same part when the inputs are either both rising edges or falling edges. The supply voltages and the loads on each channel are equal.
 ${ }^{6}$ Channel-to-channel matching, rising or falling edges is the magnitude of the propagation delay difference between two channels of the same part when one input is a rising edge and the other input is a falling edge. The supply voltages and loads on each channel are equal.
 ${ }^{7}$ Part-to-part matching, rising or falling edges is the magnitude of the propagation delay difference between the same channels of two different parts when the inputs are either both rising or falling edges. The supply voltages, temperatures, and loads of each part are equal.
 ${ }^{8}$ Part-to-part matching, rising vs. falling edges is the magnitude of the propagation delay difference between the same channels of two different parts when one input is a rising edge and the other input is a falling edge. The supply voltages, temperatures, and loads of each part are equal.

[^1]: ${ }^{1}$ All voltages are relative to their respective ground.
 ${ }^{2}$ See the Common-Mode Transient Immunity section for transient diagrams and additional information.

[^2]: ${ }^{1}$ All voltages are relative to their respective ground.
 ${ }^{2}$ Input-to-output voltage is defined as $\mathrm{GND}_{\mathrm{A}}-\mathrm{GND}_{1}$ or $\mathrm{GND}_{\mathrm{B}}-\mathrm{GND}_{1}$.
 ${ }^{3}$ Output differential voltage is defined as $\mathrm{GND}_{\mathrm{A}}-\mathrm{GND}_{\mathrm{B}}$.
 ${ }^{4}$ Refers to common-mode transients across any insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings can cause latchup or permanent damage.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

